A51S-06
New Small Satellite Capabilities for Microwave Atmospheric Remote Sensing: The Earth Observing Nanosatellite-Microwave (EON-MW)

Friday, 18 December 2015: 09:00
3004 (Moscone West)
William J Blackwell, MIT Lincoln Laboratory, Lexington, MA, United States
Abstract:
Four nanosatellite advanced technology missions flying microwave radiometers for high-resolution atmospheric sensing are in varying stages of development. Microwave instrumentation is particularly well suited for implementation on a very small satellite, as the sensor requirements for power, pointing, and spatial resolution (aperture size) can be accommodated by a nanosatellite platform. The first mission, the Microsized Microwave Atmospheric Satellite (MicroMAS), was developed to demonstrate temperature sounding in nine channels near 118 GHz on a 3U CubeSat (10x10x34 cm; 4.25 kg). MicroMAS was recently released from the International Space Station (ISS) for a 100-day mission, and while an eventual transmitter failure prevented demonstration of the radiometer payload, all key spacecraft subsystems provided on-orbit data to validate performance. Two 3U CubeSat follow-on missions, MicroMAS-2 (12 channels near 90, 118, 183, and 206 GHz; cross-track scanning) and MiRaTA (12 channels near 60, 183, and 206 GHz; no scanning; GPSRO onboard), will launch in 2016 for further demonstration.

Building upon this work, the Earth Observing Nanosatellite-Microwave mission is being formulated by MIT Lincoln Laboratory for the NOAA National Environmental Satellite, Data, and Information Service as part of the Polar Follow-On (PFO) budget request to extend JPSS for two more missions, and provides a means to mitigate the risk of a gap in continuity of weather observations. The PFO request aims to achieve robustness in the polar satellite system to ensure continuity of NOAA’s polar weather observations. The baseline EON-MW design accommodates a scanning 22-channel high-resolution microwave spectrometer on a 12U (22x22x34 cm, 20 kg) CubeSat platform to provide data continuity with the existing AMSU and ATMS microwave sounding systems. EON-MW will nominally be launched into a sun-synchronous orbit for a two to three year mitigation mission in 2019 that will also extend technology demonstration beyond what MicroMAS and MiRaTA will achieve.

Key EON-MW features include a compact dual-reflector radiometer design that permits the entire microwave sounding payload to be developed with a total mass of approximately 4 kg while maximizing antenna aperture for optimal spatial resolution.