GC31G-06
Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming
Wednesday, 16 December 2015: 09:03
3001 (Moscone West)
Martin P Girardin1, Ted Hogg1, Werner Kurz2, Pierre Y Bernier1, Xiao Jing Guo3 and Guillaume Cyr3, (1)Natural Resources Canada - Canadian Forest Service, Edmonton, AB, Canada, (2)Canadian Forest Service, Victoria, Canada, (3)Canadian Forets Service, Natural Resources Canada, Quebec, QC, Canada
Abstract:
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada’s boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2], on the aboveground productivity of black spruce forests across Canada south of 60ºN for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada’s National Forest Inventory, spatially-explicit simulations of Net Primary Productivity (NPP) and its drivers, and multivariate statistical modelling. We found that soil water availability is a significant driver of black spruce inter-annual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Inter-annual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on inter-annual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations.