S51A-2665
Source parameters of the 2014 Ms6.5 Ludian earthquake sequence and their implications on the seismogenic structure

Friday, 18 December 2015
Poster Hall (Moscone South)
Yong Zheng, Institute of Geodesy & Geophysics, Hubei, China
Abstract:
On August 3, 2014, an Ms6.5 earthquake struck Ludian county, Zhaotong city in Yunnan province, China. Although this earthquake is not very big, it caused abnormal severe damages. Thus, study on the causes of the serious damages of this moderate strong earthquake may help us to evaluate seismic hazards for similar earthquakes. Besides the factors which directly relate to the damages, such as site effects, quality of buildings, seismogenic structures and the characteristics of the mainshock and the aftershocks may also responsible for the seismic hazards. Since focal mechanism solution and centroid depth provide key information of earthquake source properties and tectonic stress field, and the focal depth is one of the most important parameters which control the damages of earthquakes, obtaining precise FMSs and focal depths of the Ludian earthquake sequence may help us to determine the detailed geometric features of the rupture fault and the seismogenic environment.

In this work we obtained the FMSs and centroid depths of the Ludian earthquake and its Ms>3.0 aftershocks by the revised CAP method, and further verified some focal depths using the depth phase method. Combining the FMSs of the mainshock and the strong aftershocks, as well as their spatial distributions, and the seismogenic environment of the source region, we can make the following characteristics of the Ludian earthquake sequence and its seismogenic structure: (1) The Ludian earthquake is a left-lateral strike slip earthquake, with magnitude of about Mw6.1. The FMS of nodal plane I is 75o/56o/180o for strike, dip and rake angles, and 165o/90o/34ofor the other nodal plane. (2) The Ludian earthquake is very shallow with the optimum centroid depth of ~3 km, which is consistent with the strong ground shaking and the surface rupture observed by field survey and strengthens the damages of the Ludian earthquake. (3) The Ludian Earthquake should occur on the NNW trend BXF. Because two later aftershocks occurred close to the fault zone of the ZLF, and their FMSs are similar with the characteristics of the ZLF, the shallower part of the ZLF may also rupture during the aftershock duration of the Ludian earthquake. Since the ZLF is much longer than the BXF, the seismic risk of the ZLF may be high and should be required more attention.