S51A-2664
Contending non-double-couple source components with hierarchical Bayesian moment tensor inversion

Friday, 18 December 2015
Poster Hall (Moscone South)
Marija Mustac and Hrvoje Tkalcic, Australian National University, Canberra, ACT, Australia
Abstract:
Seismic moment tensors can aid the discrimination between earthquakes and explosions. However, the isotropic component can be found in a large number of earthquakes simply as a consequence of earthquake location, poorly modeled structure or noise in the data. Recently, we have developed a method for moment tensor inversion, capable of retrieving parameter uncertainties together with their optimal values, using probabilistic Bayesian inference. It has been applied to data from a complex volcanic environment in the Long Valley Caldera (LVC), California, and confirmed a large isotropic source component. We now extend the application to two different environments where the existence of non-double-couple source components is likely.

The method includes notable treatment of the noise, utilizing pre-event noise to estimate the noise covariance matrix. This is extended throughout the inversion, where noise variance is a “hyperparameter” that determines the level of data fit. On top of that, different noise parameters for each station are used as weights, naturally penalizing stations with noisy data. In the LVC case, this means increasing the amount of information from two stations at moderate distances, which results in a 1 km deeper estimate for the source location. This causes a change in the non-double-couple components in the inversions assuming a simple diagonal or exponential covariance matrix, but not in the inversion assuming a more complicated, attenuated cosine covariance matrix.

Combining a sophisticated noise treatment with a powerful Bayesian inversion technique can give meaningful uncertainty estimates for long-period (20-50 s) data, provided an appropriate regional structure model.