B13G-0711
Seasonally dependent iron limitation of nitrogen fixation in tropical forests of karst landscapes

Monday, 14 December 2015
Poster Hall (Moscone South)
Joy Beth Winbourne1, Steven Brewer2 and Benjamin Z Houlton1, (1)University of California Davis, Davis, CA, United States, (2)Copperhead Consulting, Ashville, NC, United States
Abstract:
Limestone tropical forests in karst topography are one of the most poorly studied ecosystems on Earth, and has been substantially cleared by human activities throughout much of Central America. This ecosystem is noted for its high level of plant productivity, biomass, endemism and biological diversity compared to nearby neighboring tropical forests on volcanic rock substrates (Brewer et al. 2002). A question remains as to how limestone tropical forests are able to maintain the high nutrient demands of plant photosynthesis and tree biomass growth. Here, we demonstrate that rates of nitrogen (N) fixation are higher in limestone versus volcanic soil substrates, with direct evidence for the emergence of seasonally dependent iron limitation of N fixation in limestone tropical forest. N fixation rates showed a three-fold increase in response to iron additions, especially during the wet season when N demands of the forest trees are highest. In contrast, adjacent forests growing on the more classical acidic volcanic soils showed no response to iron or other nutrient additions. Biologically available pools of iron were exceedingly low in the limestone forest site, consistent with the complexation of iron under high pH conditions. Biological acquisition of iron, as measured by the concentration of iron chelating compounds (i.e. siderophores), provided additional evidence for iron limitation of microbial processes in limestone tropical forests, where concentrations were six times higher than those at the volcanic site. Our results suggest that the functioning of limestone tropical forest is strongly regulated by interactions between iron, soil pH, and N cycling.