B13G-0712
The Influence of Geologic Nitrogen on Douglas Fir Foliar Mass and Elemental Composition

Monday, 14 December 2015
Poster Hall (Moscone South)
Scott Allen Mitchell, University of California Davis, Davis, CA, United States
Abstract:
Sedimentary and metasedimentary rocks can house large reservoirs of N that are bioavailable as rock weathers to soil, and may be particularly important among montane landscapes where rock exhumation is rapid. Carbon storage and productivity of forests, particularly temperate and boreal forests are limited by N availability, and N inputs from geologic sources may drive higher productivity and above-ground biomass storage when compared to sites receiving only atmospheric N inputs. Here we investigate the foliar chemistry and biomass across a gradient of geologic N to determine whether rock N influences the nutrient status and biomass storage in forest foliage. We hypothesize that Douglas fir trees growing on sites with greater rock N will have larger pools of carbon, nitrogen, and phosphorous in foliar biomass than trees relying exclusively on atmospheric inputs. Foliage samples collected from six sites in northwestern California were weighed to establish a 100 needle mass average for each site and analyzed by ICP-MS for elemental composition as well as continuous flow IRMS. Working across a rock N gradient (63-800 mg N/kg), we observe that foliar (per needle) N (1.5-4.7 ng), P (0.3-0.8 ng), and C (65.2-2116.5 ng) is positively correlated (R2 of 0.26, 0.38, and 0.89, respectively) with bedrock N content. Foliar mass of individual needles also increases across the rock N gradient from 1.3 to 3.7 mg. These results show that the carbon content in foliage (P≤0.05) is correlated with the underlying rock N concentrations, and suggest that trees developing on N-rich bedrock exhibit increased potential for foliar carbon storage.