S33A-2749
Reactivity of seismicity rate to static Coulomb stress changes of two consecutive large earthquakes in the central Philippines
Wednesday, 16 December 2015
Poster Hall (Moscone South)
John Dale Basas Dianala1, Mario Aurelio1, Jeremy Manalansan Rimando2 and Kristine Taguibao3, (1)National Institute of Geological Sciences, University of the Philippines, Quezon City, Philippines, (2)University of Toronto, Toronto, ON, Canada, (3)Akita University, Akita, Japan
Abstract:
In a region with little understanding in terms of active faults and seismicity, two large-magnitude reverse-fault related earthquakes occurred within 100km of each other in separate islands of the Central Philippines—the Mw=6.7 February 2012 Negros earthquake and the Mw=7.2 October 2013 Bohol earthquake. Based on source faults that were defined using onshore, offshore seismic reflection, and seismicity data, stress transfer models for both earthquakes were calculated using the software Coulomb. Coulomb stress triggering between the two main shocks is unlikely as the stress change caused by Negros earthquake on the Bohol fault was -0.03 bars. Correlating the stress changes on optimally-oriented reverse faults with seismicity rate changes shows that areas that decreased both in static stress and seismicity rate after the first earthquake were then areas with increased static stress and increased seismicity rate caused by the second earthquake. These areas with now increased stress, especially those with seismicity showing reactivity to static stress changes caused by the two earthquakes, indicate the presence of active structures in the island of Cebu. Comparing the history of instrumentally recorded seismicity and the recent large earthquakes of Negros and Bohol, these structures in Cebu have the potential to generate large earthquakes. Given that the Philippines’ second largest metropolitan area (Metro Cebu) is in close proximity, detailed analysis of the earthquake potential and seismic hazards in these areas should be undertaken.