SM13C-2531
Asymmetric Magnetic Reconnection with Flow Shear: PIC Simulations and Magnetopause Applications

Monday, 14 December 2015
Poster Hall (Moscone South)
Christopher Doss and Paul Cassak, West Virginia University, Department of Physics and Astronomy, Morgantown, WV, United States
Abstract:
Magnetic reconnection at Earth’s dayside magnetopause is typically characterized by significant asymmetries in both magnetic field strength and plasma density. In addition, a flow shear across the reconnection site in the plane of the reconnecting magnetic field can be caused by magnetosheath flow, especially at higher latitudes. Being able to predict the solar wind’s effect on reconnection is important for understanding, e.g., solar wind-magnetospheric coupling. Recently, we showed that flow shear during asymmetric reconnection causes the reconnection site to convect in the outflow direction, predicted the flow speed from momentum conservation, and confirmed the results with two-dimensional two-fluid numerical simulations (Doss et al., J. Geophys. Res., submitted). We also predicted and confirmed with two-fluid simulations the reconnection rate as a function of upstream plasma conditions and the flow shear required to shut reconnection off. Here, we revisit this system using two-dimensional fully electromagnetic particle-in-cell (PIC) simulations, which treat plasma mixing in the exhaust more realistically than the fluid model. We find very good agreement between the predictions and PIC simulation results for both the X-line convection speed and the reconnection rate for flow speeds below the cutoff speed. For reconnection with typical conditions at the dayside magnetopause, we predict the reconnection site of isolated X-lines convect at nearly the same speed as the tangential component of the solar wind velocity, and the flow has little effect on the reconnection rate.