S51B-2673
Rupture Dynamics Simulations Along Subduction Zones: Bimaterial Interfaces and Free Surface Interaction

Friday, 18 December 2015
Poster Hall (Moscone South)
Antonio Scala1,2, Jean-Pierre Vilotte1 and Gaetano Festa3, (1)Institut de Physique du Globe de Paris, Paris, France, (2)The University of Naples Federico II, Naples, Italy, (3)The University of Naples Federico II, Physics, Naples, Italy
Abstract:
Largest earthquakes occur along subduction zones, where normal and tangential stress coupling drives the earthquake rupture due to the geometry of the subduction interface between dissimilar materials and the interaction with waves reflected from free surface as the rupture propagates toward the trench. We numerically investigate these effects in the context of dynamic rupture simulations.

We revisit the problem of in-plane interface rupture propagation between dissimilar elastic media, in the case of slip-weakening friction, by performing a numerical study using the Spectral Element Method with a non-smooth contact formulation. For classical slip-weakening friction, the problem is ill posed due to a missing length or time scale in the response of the frictional shear stress to dynamic normal stress perturbations. We first perform a parametric study of the regularization formulation proposed by Rubin and Ampuero (2007). We show that the dynamic regularization, driven by local slip rate does not allow for a proper modeling of the asymptotic rupture propagation. We propose a new regularization approach based on the non-local length scale, associated to the actual size of the process zone. Numerical results are shown to be consistent with mathematical modeling of dynamic interface rupture propagation with a process zone ahead of the rupture front.

The numerical study is extended to inclined ruptures intersecting a free surface at different angles. We investigate interaction between rupture propagation and stress changes induced by waves reflected from the free surface, in the generation of large interface slip, transient healing and opening effects. Finally, preliminary in-plane dynamic simulations of the 2011 Tohoku earthquake, incorporating the along-dip structure and geometry of the subduction interface, are presented enlightening the role of the geometry of the bi-material interface and of the free surface in the rupture propagation and radiation.