EP33A-1054
Experimental study on unsteady open channel flow and bedload transport based on a physical model

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Wenhong Cao, IWHR Institute of Water Resources and Hydropower Research, CAS, Beijing, China
Abstract:
Flow in a nature river are usually unsteady, while nearly all the theories about bedload transport are on the basis of steady, uniform flow, and also with supposed equilibrium state of sediment transport. This is may be one of the main reasons why the bedload transport formulas are notoriously poor accuracy to predict the bedload. The aim of this research is to shed light on the effect of unsteadiness on the bedload transport based on experimental studies. The novel of this study is that the experiments were not carried out in a conventional flume but in a physical model, which are more similar to the actual river. On the other hand, in our experiments, multiple consecutive flood wave were reproduced in the physical model, and all the flow and sediment parameters are based on a large number of data obtained from many of identical flood waves. This method allow us to get more data for one flood, efficiently avoids the uncertainty of bedload rate only for one single flood wave, due to the stochastic fluctuation of the bedload transport. Three different flood waves were selected in the experiments. During each run of experiment, the water level of five different positions along the model were measured by ultrasonic water level gauge, flow velocity at the middle of the channel were measured by two dimensional electromagnetic current meter. Moreover, the bedload transport rate was measured by a unique automatic trap collecting and weighing system at the end of the physical model. The results shows that the celerity of flood wave propagate varies for different flow conditions. The velocity distribution was approximately accord with log-law profile during the entire rising and falling limb of flood. The bedload transport rate show intensity fluctuation in all the experiments, moreover, for different flood waves, the moment when the shear stress reaches its maximum value is not the exact moment when the sediment transport rate reaches its maximum value, which indicates that the movement of flow and the sediment are not always synchronous during the flood processes. Comparing the bedload transport rate with the existing results of steady flows shows that the bedload transport capacity in unsteady flow is greater than that of the steady flow with same bed shear stresses.

(Supported by KPNST(2013BAB12B01; 2012BAB04B01) and NSFC(11472310))