H51O-1625
Ground Energy Balance For Shallow Geothermal Systems
Ground Energy Balance For Shallow Geothermal Systems
Friday, 18 December 2015
Poster Hall (Moscone South)
Abstract:
Vertical borehole heat exchangers (BHE) represent the most common applications by far in the field of shallow geothermal energy. They are typically operated for decades for energy extraction from the top 400 m of the subsurface. During this lifetime, thermal anomalies are generated in the ground and surface-near aquifers. These anomalies often grow over the years and compromise the overall performance of the geothermal system. As a basis for prediction and control of the developing energy imbalance in the ground, the focus is often set on the ground temperatures. This is reflected, for instance, in regulative temperature thresholds. As an alternative to temperature, we examine the temporal and spatial variability of heat fluxes and power sources during geothermal heat pump operation. The underlying idea is that knowledge of the primary heat sources is fundamental for the control of ground temperature evolution. For analysis of heat fluxes, an analytical framework for BHE simulation based on Kelvin’s line source is re-formulated. This is applied to a synthetic study and for modelling a long-term application in the field.Our results show that during early operation phase, energy is extracted mainly from the underground. Local depletion at the borehole enhances the vertical fluxes with the relative contribution from the bottom reaching a limit of 24 % of the total power demand. The relative contribution from the ground surface becomes dominant for Fourier numbers larger than 0.13. For the full life cycle, vertical heat flux from the ground surface dominates the basal heat flux towards the BHE and it provides about two thirds of the demanded power. Finally, we reveal that the time for ground energy recovery after BHE shutdown may be longer than what is expected from simulated temperature trends.