OS11A-1988
Determination and analysis of the CSRMSS14 mean sea surface model

Monday, 14 December 2015
Poster Hall (Moscone South)
Hyo-Jin Kim1, Byron D Tapley2, John C Ries1 and Timothy J Urban2, (1)Center for Space Research, Austin, TX, United States, (2)Univ Texas Austin, Austin, TX, United States
Abstract:
As a pivotal role of various applications for ocean sciences, the mean sea surface (MSS) has been developed by merging the sea surface heights (SSH) data sets from different missions for decades. Prior to combining various satellite data, a data adjustment process is applied to make those data sets more homogeneous and consistent. This process is required because there are significant differences in the characteristics and qualities of the measurement corrections, orbit accuracy and systematic biases between the multiple satellite data sets. We have developed a more effective and efficient data adjustment procedure that reduces the long-wavelength errors and systematic biases. A new method is used to obtain an improved SSH data set for selected satellite missions by integrating the SSH gradients with constraints imposed by the Jason-1 mean SSH profile. Using this approach, a total of 5 different satellite SSH data sets (2-year Geosat Exact repeat mission, 6-year ERS-2, 10-year Topex/Poseidon, 8-year Envisat and ERS-1 geodetic mission) were adjusted to the 7-year Jason-1 mean SSH profile. As a result, a new mean sea surface (MSS), named CSRMSS14, was determined from these adjusted satellite data sets. The accuracy of the new MSS was evaluated by comparing with the recent DTU10 global mean sea surface model, and a somewhat independent analysis was performed by comparing Jason-2 altimeter SSH data with DTU10 and CSRMSS14. This presentation describes the approach and the results of the model intercomparisons.