OS11A-1987
Sub-mesoscale Eddies and Their Propagation Paths in Long Bay, SC Observed in HF Radar Surface Currents

Monday, 14 December 2015
Poster Hall (Moscone South)
Douglas Cahl and George Voulgaris, University of South Carolina Columbia, Columbia, SC, United States
Abstract:
Sub-mesoscale eddies on the shoreward front of the Gulf Stream (GS) are thought to play a critical role in controlling cross-shelf transport and momentum flux in the South Atlantic Bight (SAB) but cannot be observed continuously from satellites due to cloud cover. Non-linear eddies have the ability to trap and transport water as they propagate, which make them a potential source of cross-shelf transport. Long Bay, SC, just downstream of the Charleston Bump is the area of highest eddy activity in the SAB. Surface currents in Long Bay have been observed since 2012 using HF radars. The accuracy of three eddy detection methods (Okubo-Weiss, Vector-geometry, Winding-angle) are compared in this area of high shear on the shoreward front of the GS. The Okubo-Weiss parameter does not perform well in this area due to the high shear environment where eddies propagate. The Vector-Geometry method has good successful detection rates but suffers in shape analysis from inaccurate Stream Function contours in this area due to divergent surface currents. The Winding-Angle method performs well and was used to detect eddies and their propagation paths in Long Bay for years 2013 and 2014. Detected eddies propagate predominantly along-shelf, with cyclonic (anticyclonic) eddies propagating downstream (upstream) with respect the GS. Few eddies with the ability to trap and transport water propagating in the across-shelf direction were observed, leading to the conclusion that most of the influence of these eddies is confined to the shoreward front of the GS, near the shelf break.