G31A-1088
Using GPS loading deformation to distinguish different hydrological measurements and models

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Yuning Fu, Organization Not Listed, Washington, DC, United States
Abstract:
The earth’s lithosphere is deformed elastically by seasonal and inter-annual surface mass variations. The Global Positioning System (GPS) accurately measures 3D crustal deformation caused by surface hydrological mass movements. In this study, we calculate the loading deformation using different hydrological models and in-situ hydrological measurements, and compare those modeled results with actual deformation measurements of the dense GPS network in United States and Europe. Therefore, GPS can be used as an independent tool to evaluate the differences between hydrological measurements and models. We are particularly interested in comparing the snow volume differences between in-situ snow measurement (such as SNOTEL) and the snow components of simulated models (such as GLDAS or NLDAS). We, therefore, demonstrate that GPS as a geodetic observation can provide valuable information for hydrological studies.