C33D-0853
A research on snow distribution in mountainous area using airborne laser scanning

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Terumasa Nishihara, Civil Engneering Research Institute for Cold region, Sapporo, Japan and Atsushi Tanise, PWRI Public Works Research Instituite, CERI Civil Engineering Research Institute for cold region, Sapporo, Japan
Abstract:
In snowy cold regions, the snowmelt water stored in dams in early spring meets the water demand for the summer season. Thus, snowmelt water serves as an important water resource. However, snowmelt water also can cause snowmelt floods. Therefore, it’s necessary to estimate snow water equivalent in a dam basin as accurately as possible. For this reason, the dam operation offices in Hokkaido, Japan conduct snow surveys every March to estimate snow water equivalent in the dam basin. In estimating, we generally apply a relationship between elevation and snow water equivalent. But above the forest line, snow surveys are generally conducted along ridges due to the risk of avalanches or other hazards. As a result, snow water equivalent above the forest line is significantly underestimated. In this study, we conducted airborne laser scanning to measure snow depth in the high elevation area including above the forest line twice in the same target area (in 2012 and 2015) and analyzed the relationships of snow depth above the forest line and some indicators of terrain.

Our target area was the Chubetsu dam basin. It’s located in central Hokkaido, a high elevation area in a mountainous region. Hokkaido is a northernmost island of Japan. Therefore it’s a cold and snowy region. The target range for airborne laser scanning was 10km2. About 60% of the target range was above the forest line.

First, we analyzed the relationship between elevation and snow depth. Below the forest line, the snow depth increased linearly with elevation increase. On the other hand, above the forest line, the snow depth varied greatly.

Second, we analyzed the relationship between overground-openness and snow depth above the forest line. Overground-openness is an indicator quantifying how far a target point is above or below the surrounding surface. As a result, a simple relationship was clarified. Snow depth decreased linearly as overground-openness increases. This means that areas with heavy snow cover are distributed in valleys and that of light cover are on ridges.

Lastly we compared the result of 2012 and that of 2015. The same characteristic of snow depth, above mentioned, was found. However, regression coefficients of linear equations were different according to the weather conditions of each year.