C33D-0852
The incorporation of an organic soil layer in the Noah-MP Land Surface Model and its evaluation over a Boreal Aspen Forest

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Yanping Li and Liang Chen, University of Saskatchewan, Saskatoon, SK, Canada
Abstract:
In this study, the multi-parameterization version of the Noah land-surface model (Noah-MP) was used to investigate the impact of adding a forest-floor organic soil layer on the simulated surface energy and water cycle components at a boreal aspen forest. The test site selected is BERMS Old Aspen Flux (OAS) field station in central Saskatchewan, Canada. The selection of different parameterization schemes for each process within the current Noah-MP model significantly affected the simulation results. The best combination options without incorporating organic soil is referred as the control experiment (CTL). By including an organic-soil parameterization within the Noah-MP model for the first time, the verification results (OGN) against site show significantly improved performance of the model in surface energy fluxes and hydrology simulation due to the lower thermal conductivity and greater porosity of the organic soil. The effects of including an organic soil layer on soil temperature are not uniform throughout the soil depth and year, and those effects are more prominent in summer and in deep soils. For drought years, the OGN simulation substantially modified the partition between direct soil evaporation and vegetation transpiration. For wet years, the OGN simulated latent heat fluxes are similar to CTL except for spring season where OGN produced less evaporation. The impact of the organic soil on sub-surface runoff is substantive with much higher runoff throughout the season.