V43B-3143
Segmented Dyke Growth and Associated Seismicity at Bárðarbunga Volcanic System (Iceland) is Driven by Non-Linear Magma Pressure Diffusion
Thursday, 17 December 2015
Poster Hall (Moscone South)
Cornelius Langenbruch, Freie Universität Berlin, Geophysics, Berlin, Germany
Abstract:
In August 2014 segmented lateral dyke growth has been observed in a rifting event at Bardarbunga volcanic system, Iceland. The temporal evolution of the magma source and the physical nature of magma flow process during dyke propagation and arrest are unclear. The epidemic-type aftershock sequence model has been used to detect fluid signals in seismicity data. We use the earthquake catalog recorded during the rifting event to reconstruct the magma flow signal at the feeding source of the dyke. We find that the segmentation of dyke growth is caused by a pulsating nature of the magma flow source. We identify two main magma flow pulses, which initiate and propagate the two main segments of the dyke. During phases of dyke arrest magma flow pulses are low and cannot further propagate the dyke. We use the reconstructed magma flow signal to set up a numerical model of non-linear magma pressure diffusion. By using the magma pressure changes resulting from magma flow, we simulate the earthquake catalog caused by the reduction of the effective principal stress. We observe an excellent agreement between the spatio-temporal characteristics of the simulated earthquake catalog and recorded seismicity. Our results suggest that the process of magma pressure relaxation can be described as a non-linear diffusion process. Because the opening of the dyke creates significant new fracture volume, the permeability of the rock is strongly increasing and the diffusion process becomes highly non-linear. Our analysis is based on lessons learned from analysis of seismicity observed during hydraulic fracturing of hydrocarbon reservoirs. Despite large differences in scale, the underlying physical processes are comparable. Finally, we analyze the decay of seismic activity after start of the effusive fissure eruption near the end of the dyke. The magma flow strongly decreases and seismic activity decays according to Omori’s law, which describes the decay of aftershock activity after tectonic earthquakes. Nevertheless, we find that the earthquakes are triggered by the still ongoing process of magma pressure diffusion and not by stress transfer caused by the occurrence of preceding seismic events. Our results provide valuable insights into the nature of magma flow processes, which drive dyke propagation and associated earthquakes.