V43D-06
87Sr/86Sr Ratios in Carbonate From the Red Lake and Steep Rock Groups in Canada Suggest Rb-enriched Continental Crust was Influencing Seawater Chemistry Prior to 3.0 Ga

Thursday, 17 December 2015: 14:55
310 (Moscone South)
Aaron Satkoski1, Philip William Fralick2, Brian L Beard1 and Clark Johnson1, (1)University of Wisconsin Madison, Department of Geoscience, Madison, WI, United States, (2)Lakehead University, Department of Geology, Thunder Bay, ON, Canada
Abstract:
Previous work has suggested that prior to 2.5 Ga, Sr isotope compositions of seawater were essentially mantle buffered and the effects of continental weathering on seawater chemistry were negligible. To test this, we collected Sr isotope data from 2.93 and 2.80 Ga carbonates that are part of the Red Lake and Steep Rock groups (Canada), respectively. To better understand carbonate formation and any post-depositional alteration, Sr isotopes are considered with O isotopes and REEs, as well as Rb and Sr contents, including correction for decay of 87Rb. All samples have Y/Ho ratios higher than chondrite and have positive La anomalies, which, combined with low Rb contents suggests that clastic contamination is negligible. Samples we consider near pristine have δ18O (VSMOW) values >20‰. Samples with the highest Y/Ho ratios and largest La anomalies from Red Lake and Steep Rock have initial 87Sr/86Sr ratios of 0.7018-0.7020. This Sr isotope composition is significantly more radiogenic than contemporaneous mantle (0.7011-0.7012), especially at a time when the isotopic difference between the crust and mantle was much less than today. This implies that radiogenic continental crust was emergent and shed detritus into the world’s oceans prior to 3.0 Ga, in contrast with proposals for submerged continental crust, but in line with new estimates that continental crust at 3.0 Ga was 60-70% of current volume. We contend that this large amount of crust combined with enhanced Archean weathering could account for the radiogenic Sr isotope compositions we report here, and suggests a significant impact from continental weathering on ocean chemistry during the Archean.