V43D-07
The Role of Accessory Phases in the Sm-Nd Isotope Systematics of the Acasta Gneiss Complex

Thursday, 17 December 2015: 15:10
310 (Moscone South)
Ann Bauer1, Christopher M Fisher2, Jeffrey D. Vervoort2 and Samuel A Bowring1, (1)Massachusetts Institute of Technology, Cambridge, MA, United States, (2)Washington State University, Pullman, WA, United States
Abstract:
The Acasta Gneiss Complex (AGC) of the Slave Craton in the Northwest Territories, Canada, contains some of Earth’s oldest continental crust. It is characterized by a range of compositionally diverse gneisses with crystallization ages of 3.3 to > 4.0 Ga1-5. The AGC has undergone a multistage history of metamorphism and deformation. Given these post-crystallization processes, the extent of Nd isotope heterogeneity suggested by published4-7 whole rock Sm-Nd analyses of these rocks has been called into question. Criticisms include the likelihood of mixed lithologies at the hand-sample scale and the potential for open-system behavior of the Sm-Nd isotopic system in these rocks. We obtained whole rock compositional, Sm-Nd and Lu-Hf isotope data paired with Hf in zircon and Nd in titanite and apatite data to further evaluate the isotope record, and use U-Pb and Lu-Hf of zircon as a basis for identifying mixed or complex samples. Preferential preservation of Lu-Hf over Sm-Nd isotope systematics in multiply deformed, complex rocks may be controlled by the minerals that dominate the Hf and Nd budgets, with the majority of the Hf effectively sheltered in zircon and the Nd largely hosted in accessory phases such as apatite and titanite. This composite dataset enables us to evaluate the possibility that Hf and Nd isotopic systematics have been decoupled in these samples that have such critical bearing on our understanding of early crust-forming processes.

[1]Bowring and Williams (1999). CoMP, 134(1), 3-16. [2]Iizuka, T. et al. (2006) Geology, 34(4), 245-248. [3]Iizuka et al (2007). Precambrian Res, 153(3), 179-208. [4]Bowring et al. 1989. Nature, 340: 222-225. [5]Mojzsis et al. (2014). GCA, 133, 68–96. [6]Bowring and Housh (1995) Science 269, 1535–1540. [7]Moorbath et al (1997) Chem. Geol. 135, 213–231.