C51C-0746
Investigating the Response of Greenland Outlet Glaciers to Perturbations Using a 1D Flowline Model
Friday, 18 December 2015
Poster Hall (Moscone South)
Konstantinos Petrakopoulos, University of Kansas, Lawrence, KS, United States
Abstract:
Over the past two decades, the behavior of many Greenland tidewater outlet glaciers has been characterized by dramatic acceleration, thinning, and retreat. In some cases this behavior is followed by re-advance, thickening and deceleration. The mechanisms that control glacier stability are not fully understood, and hinder ice sheet mass balance projections. Many studies suggest that accelerations are caused exclusively by processes at the terminus, namely by mechanisms that result in increases in iceberg calving rates. In this study we investigate whether comparable accelerations can initiate at different places along the glacier trunk due to changes in subglacial processes or shear margin evolution. We begin our experiments using a prognostic depth integrated (1-D) flowline model applied to Helheim Glacier, and investigate its flow response to perturbations at the terminus and up-flow. Our work shows that large-scale accelerations could have initiated up-flow far from the terminus. The results of this study will contribute to the long-lasting debate about the role of terminus dynamics, and thus ocean conditions, in modulating ice sheet mass balance.