GP43A-1238
The mysterious malleability of titanomagnetite Curie temperatures: An update
Thursday, 17 December 2015
Poster Hall (Moscone South)
Michael J Jackson1, Julie Bowles2, Sophie-Charlotte Lappe2, Thelma Souza Berquo3 and Peter Solheid4, (1)University of Minnesota, Institute for Rock Magnetism, Minneapolis, MN, United States, (2)University of Wisconsin Milwaukee, Geosciences, Milwaukee, WI, United States, (3)Concordia College, Moorhead, MN, United States, (4)University of Minnesota Twin Cities, Institute for Rock Magnetism, Minneapolis, MN, United States
Abstract:
Intermediate-composition titanomagnetites (TM30-TM50) have recently been shown to have Curie temperatures (Tc) that depend not only on composition but also quite strongly on thermal history, with increases of 100°C or more in Tc produced by moderate-temperature (300-400° C) annealing in the lab or in slow natural cooling, and equally large decreases produced by more rapid cooling (“quenching”) from higher temperatures [e.g., Bowles et al 2013, Nature Communications]. The phenomenon is robustly defined and repeatable, but the underlying mechanism remains enigmatic, although it presumably involves some rearrangement of metal cations within the spinel lattice. New high-and low-temperature measurements, including hysteresis, frequency-dependent AC susceptibility (k(f,T)) and Mössbauer spectroscopy, were carried out to help shed light on the nanoscale mechanisms responsible for the observed changes in Tc. Fabian et al [2015, GJI] have shown for ferrimagnetic compositions in the hematite-ilmenite system that high-T hysteresis measurements exhibit a peak in high-field slope at the Curie temperature, and that the magnitude (area) of this peak is a strong function of cation ordering degree. Our data for synthetic titanomagnetites in quenched and annealed states show some indications of this, although the relationship is not perfectly systematic. On the other hand, our new low-T Mössbauer spectra, measured in the quenched and annealed states, are indistinguishable and argue against any change in site occupancy. Church et al [2011, G3] have proposed that the sharp change in low-T magnetic behavior of intermediate titanomagnetites is a “pinning transition” due to redistribution and localization of ferrous ions within the octahedral sites. Our new k(f,T) results show that the pinning transition in some samples is strongly affected by prior annealing or quenching, suggesting that these treatments affect the intrasite cation distributions. Such an idea is consistent with atomistic models of the qandlite-magnesioferrite system [Harrison et al., 2013, Am. Mineralogist], which show temperature-dependent octahedral-site chemical clustering.