A23E-0387
First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Rebecca M Garland1,2, Hannah Horowitz3, Marcus James Thatcher4, Mogesh Naidoo1, Jacobus van der Merwe1, Willem Landman5 and Francois Engelbrecht1, (1)CSIR, Pretoria, South Africa, (2)North-West University, Potchefstroom, South Africa, (3)Harvard University, Cambridge, MA, United States, (4)CSIRO, Melbourne, Australia, (5)CSIR, Natural Resources and the Environment, Pretoria, South Africa
Abstract:
An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean.

Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 – 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in regional climate modeling and the potential impact on climate predictions, and is the first large scale climate model-measurement verification of aerosols over Africa that we are aware of. CCAM is widely used for regional climate modeling applications, and we also discuss further improvements to the aerosol parameterizations based on our results.