PP23C-2316
The δ13C evolution of cave drip water along discreet flow paths in a central Texas cave: Quantifying kinetic isotope fractionation factors

Tuesday, 15 December 2015
Poster Hall (Moscone South)
Patrick John Mickler, University of Texas at Austin, Bureau of Economic Geology, Jackson School of Geosciences, Austin, TX, United States
Abstract:
Gaps remain in our understanding of in-cave processes that influence cave water chemistry during speleothem formation. Quantifying environmental controls on the isotopic and chemical evolution of karst groundwater would improve the accuracy of speleothem-based paleoclimate reconstructions. In this study, drip water chemical evolution along flow paths was sampled monthly at two locations in Inner Space Cavern, Texas, over a period of 8 months. In each of the two locations, cave water drips off a stalactite, flows along a flowstone and subsequently drips off a lower stalactite, allowing cave water to be sampled at two points, 1-2 meters apart, along each flow path. The chemical and isotopic evolution of drip water along its flow path shows seasonality, where 1) summer months (high cave-air pCO2) have small variations in δ13C values along the flow paths, high and relatively invariant DIC and Ca values,; and 2) winter months (low cave-air pCO2) generally have large increases in DIC δ13C values along the flow paths, lower DIC and Ca values.

The magnitude of the increase in DIC δ13C values along the flow paths, <~1‰ to ~4‰, is controlled by the extent of DIC loss to CO2 degassing and calcite precipitation which is controlled by the pCO2 gradient between drip water and cave air. If the DIC loss is less than 15%, then the evolution of the δ13C value of the DIC reservoir can be modelled using a Rayleigh distillation model and equilibrium fractionation factors between (CO2(g)-HCO3-(aq)) and (CaCO3-HCO3-(aq)). As the loss of the DIC reservoir increases above 15% the DIC δ13C values become progressively higher such that the ε (CO2(g)-HCO3-(aq)) values needed to model the observed results change from equilibrium values of ~8‰ to non-equilibrium values up to ~25‰. The variance in magnitude of carbon isotope fractionation during CO2 degassing cannot be attributed to changes in temperature, and thus we infer significant kinetic isotope effects at higher rates of DIC loss.