H33F-1682
Validated Metrics of Quick Flow Improve Assessments of Streamflow Generation Processes at the Long-Term Sleepers River Research Site

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Stephen D Sebestyen, USDA Forest Service, Grand Rapids, MN, United States and James B Shanley, U.S. Geological Survey, Montpelier, VT, United States
Abstract:
There are multiple approaches to quantify quick flow components of streamflow. Physical hydrograph separations of quick flow using recession analysis (RA) are objective, reproducible, and easily calculated for long-duration streamflow records (years to decades). However, this approach has rarely been validated to have a physical basis for interpretation. In contrast, isotopic hydrograph separation (IHS) and end member mixing analysis using multiple solutes (EMMA) have been used to identify flow components and flowpath routing through catchment soils. Nonetheless, these two approaches are limited by data from limited and isolated periods (hours to weeks) during which more-intensive grab samples were analyzed. These limitations oftentimes make IHS and EMMA difficult to generalize beyond brief windows of time. At the Sleepers River Research Watershed (SRRW) in northern Vermont, USA, we have data from multiple snowmelt events over a two decade period and from multiple nested catchments to assess relationships among RA, IHS, and EMMA. Quick flow separations were highly correlated among the three techniques, which shows links among metrics of quick flow, water sources, and flow path routing in a small (41 ha), forested catchment (W-9) The similarity in responses validates a physical interpretation for a particular RA approach (the Ekhardt recursive RA filter). This validation provides a new tool to estimate new water inputs and flowpath routing for more and longer periods when chemical or isotopic tracers may not have been measured. At three other SRRW catchments, we found similar strong correlations among the three techniques. Consistent responses across four catchments provide evidence to support other research at the SRRW that shows that runoff generation mechanisms are similar despite differences in catchment sizes and land covers.