GC33G-06
Evaluation of Statistical Downscaling Skill at Reproducing Extreme Events
Abstract:
Climate model outputs usually have much coarser spatial resolution than is needed by impacts models. Although higher resolution can be achieved using regional climate models for dynamical downscaling, further downscaling is often required. The final resolution gap is often closed with a combination of spatial interpolation and bias correction, which constitutes a form of statistical downscaling. We use this technique to downscale regional climate model data and evaluate its skill in reproducing extreme events.We downscale output from the North American Regional Climate Change Assessment Program (NARCCAP) dataset from its native 50-km spatial resolution to the 4-km resolution of University of Idaho's METDATA gridded surface meterological dataset, which derives from the PRISM and NLDAS-2 observational datasets. We operate on the major variables used in impacts analysis at a daily timescale: daily minimum and maximum temperature, precipitation, humidity, pressure, solar radiation, and winds.
To interpolate the data, we use the patch recovery method from the Earth System Modeling Framework (ESMF) regridding package. We then bias correct the data using Kernel Density Distribution Mapping (KDDM), which has been shown to exhibit superior overall performance across multiple metrics.
Finally, we evaluate the skill of this technique in reproducing extreme events by comparing raw and downscaled output with meterological station data in different bioclimatic regions according to the the skill scores defined by Perkins et al in 2013 for evaluation of AR4 climate models.
We also investigate techniques for improving bias correction of values in the tails of the distributions. These techniques include binned kernel density estimation, logspline kernel density estimation, and transfer functions constructed by fitting the tails with a generalized pareto distribution.