GC33G-05
Streamflow estimation using WRF-Hydro with dynamically downscaled climate variables over southern tropical Indian region

Wednesday, 16 December 2015: 14:40
3003 (Moscone West)
Saimy Davis, Kulamulla Parambath Sudheer and Sachin S Gunthe, Indian Institute of Technology Madras, Chennai, India
Abstract:
Indian summer monsoon rainfall (ISMR; June to September), which constitutes around 80% of India’s annual rainfall, has shown an increasing trend in intensity and frequency of extreme events (Goswami et al., 2006). It is a widely recognized fact that the increasing temperature in association with anthropogenic activities can affect the hydrological cycle, which leads to extreme events. In addition a shift in extremes of the spatial pattern of ISMR has recently been observed (Ghosh et al., 2011). Such changes in rainfall on temporal and spatial scale can further affect the stream flow over a given region subsequently making water resource management a difficult task (Mondal and Mujumdar, 2015).

The hydrological models used for the stream flow estimation are dependent on various climate variables as input data. These climate variables could be obtained through either observational networks or climate model outputs. Due to the scarcity of the observational data over the Indian region and the coarse resolution of global climate model output, which is used as input to hydrologic models, large uncertainties are introduced in stream flow output (Overgaard et al., 2007).

In the present study we have used the Weather Research and Forecasting (WRF) model (Skamarock et al. 2008) to downscale the essential climate variables (surface temperature, precipitation, relative humidity, etc.) as an input for its coupled hydrological extension, WRF Hydro (NCAR user's guide). We will present the results obtained from the WRF-hydro simulation to estimate the stream flow over the Thamirabarani river basin in Southern Tropical Indian region. Preliminary simulations using WRF to estimate the precipitation showed the reasonable quantitative agreement with observed values. An attempt will be made to demonstrate how these results can further be used for developing flood-forecasting techniques and for local regional water resource management.