V44C-08
On the longevity of silicic magma based on multi-isotope investigation of zircons and modeling their survivals destinies

Thursday, 17 December 2015: 17:45
308 (Moscone South)
Ilya N Bindeman1, Joern-frederik Wotzlaw2,3 and Oleg E Melnik1, (1)University of Oregon, Department of Geological Sciences, Eugene, OR, United States, (2)University of Geneva, Geneva, Switzerland, (3)ETH-Zurich,, Earth Sciences,, Zurich, Switzerland
Abstract:
Large volumes of crystal poor, near-liquidus rhyolites are erupted worldwide as tuffs and lavas in rift and hot spots more common previously on early earth, creating temporally very high magma production rates. In this contribution we combine results of IDTIMS dating of zircons with numerical modeling of zircon crystallization. New investigation of zircons in major Yellowstone tuffs: Huckleberry Ridge (Members A,B,C), Mesa Falls, and Lava Creek (A,B) tuffs was done by a combination of in situ measurements of oxygen isotopes followed by ID-TIMS U-Pb dating, Hf isotopes and trace elemental investigation of single crystals. We discover that nearly all zircons are of eruption age, but display significant isotope (O,Hf) diversity and often show decoupled O and Hf isotope systematics. This record rapid (~103yrs) double or triple remelting and sequestration from diverse Archean crust and hydrothermally altered shallow-crustal rocks from previous eruptive cycles, followed by effective mixing of co-existing magma reservoirs with diverse zircons prior to eruptions. Similar results characterize other studied Snake River Plain rhyolites in pre-Yellowstone Heise complex. These results collectively suggest that zircons crystallize after reheating above saturation rejuvenation in isotopically-diverse areas of the crust in the magma plumbing system. Modeling of zircon and quartz dissolution and crystallization trajectories outline conditions of survival (inheritance) vs complete dissolution on conductive timescales, and when combined with a phase diagram, magma T-t paths can be computed. Zircon rejuvenation requires hot, >770-800°C peak temperatures lasting 10-102yrs. We speculate that near liquidus hot and dry Yellowstone rhyolites are kept alive in a multi-batch state by a series of interconnected pods and sills that can rapidly get thermomechanically assembled into large, shallow and eruptable supervolcanoic magma bodies. We suggest that overpressure and roof dynamics and rheology plays a more important role than magma buyoncy. The runaway batch assembly process creates temporally very high magma production rates, orders of magnitude higher than for arc volcanoes. Such views have implication for the state of the magma chamber under Yellowstone and similar supervolcanoes elsewhere.