B53G-0648
A Comparison of the Sensitivities of Dominant Plant Species to Experimental Drought

Friday, 18 December 2015
Poster Hall (Moscone South)
Andrew Jennings Felton1, Melinda Smith2, Robert Griffin-Nolan1 and Ingrid Slette1, (1)Colorado State University, Biology, Fort Collins, CO, United States, (2)Colorado State University, Fort Collins, CO, United States
Abstract:
Locally and globally, climate extremes are expected to become an increasingly important determinant of terrestrial ecosystem structure and functioning. In particular, extreme drought events are likely to have the most pronounced and negative impact on biodiversity (Tilman and El haddi 1992), carbon storage (Ciais et al. 2005) and cycling (Reichstein et al. 2013). As a consequence, an expressed need has been for a next generation of experiments designed to elucidate the causes and consequences of ecosystem sensitivity to drought (Smith 2011, Reichstein et al. 2013). A recent analysis of the 2012 U.S. Southwest drought revealed different sensitivities in primary production across five grassland ecosystems positioned along a precipitation gradient, with the most mesic (wet) grassland less sensitive than the most xeric (dry) grassland (Knapp et al. 2015). While this analysis suggests increasing sensitivity to drought with decreasing mean annual precipitation (MAP), an understanding of the relative roles of the abiotic (e.g., resource availability) and biotic (e.g., species identity) ecosystem components in driving this sensitivity trend is unclear. To address this uncertainty, we conducted a soil moisture manipulation study using the dominant grass species from the tallgrass prairie (892mm MAP), the shortgrass steppe (372mm MAP), and desert grassland (246mm MAP). The study imposed a “dry-down” to four target levels of volumetric soil water content at 25%, 20%, 15% and 10% to simulate different drought intensities. Each plant species experienced identical levels of water availability, with environmental conditions such as soil resource supply and temperature also held constant. Thus, this study allowed us to isolate each species sensitivity to water availability without confounding environmental differences. Measurements included growth rates of stem outputs and photosynthetically active leaves, maximum carbon assimilation, above and belowground net primary production. In total, the proposed application of this study is to contribute towards an understanding of the determinants of grassland ecosystem sensitivity to drought, with the underlying assumption that the responses of dominant plant species will largely determine ecosystem responses to contemporary and future climate change.