GC13K-05
Will greater shrub abundance greatly impact tundra surface-atmosphere exchanges of energy and carbon?

Monday, 14 December 2015: 14:40
3003 (Moscone West)
Elyn Humphreys, Carleton University, Ottawa, ON, Canada and Peter Lafleur, Trent University, Peterborough, ON, Canada
Abstract:
Increasing deciduous shrub abundance, productivity, and range in the Arctic comes with the potential for both negative and positive feedbacks to the climate system. This study presents six seasons of eddy covariance measurements of carbon dioxide (CO2) and latent and sensible heat fluxes along a shrub gradient in Canada’s Low Arctic. Three flux tower sites with 17, 45, and 64% dwarf birch cover were established within a few kilometers of each other to investigate differences in microclimate, energy and carbon exchanges.

As expected, there was greater winter snow depth but less summer soil thaw with greater shrub cover. However, snowmelt timing and speed were usually similar among sites. Despite a reduction in albedo in spring and greater leaf area through summer, latent heat fluxes were consistently lower with greater shrub cover. Offset by small differences in sensible heat fluxes, total seasonal atmospheric heating (combined sensible and latent heat fluxes) was similar among sites. We anticipated greater net uptake of CO2 through the growing season with greater shrub cover. However, that was only the case in some years. There was much more week-to-week and year-to-year variability in CO2 fluxes at the shrubbiest site suggesting photosynthesis and respiration processes were more sensitive to weather variations. Shrub abundance does impact tundra surface-atmosphere exchanges of energy and carbon but these observations also highlight the complexity involved in predicting the net climate feedback effect of current and future Arctic vegetation change.