GC13K-06
Response of plant tundra communities to changes in abiotic and biotic environments: Importance of the temporal dimension

Monday, 14 December 2015: 14:55
3003 (Moscone West)
Patrick Saccone, University of Oulu, Ecology, Oulu, Finland
Abstract:
Understanding of ecosystem response to changing environment have been improved by the convergence of observational and experimental approaches that allow disentangling mechanisms involved and large scale subsequent patterns. However, such approaches often face context-dependence of underlying processes, and a major challenge of community ecology is to deepen our understanding of this context-dependency for reliable upscaling.

Here we used the results from several transplant experiments of heath communities in the Northern Fennoscandian during the last two decades to investigate the relative importance of abiotic and biotic drivers and the plant functional response. The plant community composition of blocks of heath vegetation from diverse origins transplanted in contrasted abiotic and biotic conditions was monitored from 6 to 23 years depending on the design.

Considering both abiotic severity and biotic environment, the transplantation along altitudinal gradient constituted major habitat perturbation, in particular for communities from the mountain tundra vulnerable to strong functional shift. In addition, the joint effects of multiple drivers associated to grazing pressure and abiotic micro heterogeneity resulted in divergent community in the long-term. However, the different factors operated on different temporal scales. The vegetation depending on their origin and functional type also showed contrasted patterns from immediate and transient response to strong biological inertia.

Our results reveal the potential for alternative response of plant communities depending on the interplay between the multiple drivers and the functional attributes of the vegetation. This interplay should drive plant communities toward divergent alternative states, but our ability to extrapolate longer-term trajectories from partial dynamics is challenged by the temporal differences in drivers pressure and plant response. The responses to manipulation appear as successional processes and long-term experiments might be inescapable to bridge process and pattern in the response of ecosystem to changing environment.