GC33B-1284
CONIFER DECLINE AND MORTALITY IN SIBERIA

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Sergei Im1, Viacheslav Kharuk1 and Kenneth Ranson2, (1)V.N.Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia, (2)NASA Goddard Space Flight Center, Greenbelt, MD, United States
Abstract:
“Dark needle conifer” (DNC: Abies sibirica, Pinus sibirica and Picea obovata) decline and mortality increase were documented in Russia during recent decades. Here we analyzed causes and scale of Siberian pine and fir mortality in Altai-Sayan and Baikal Lake Regions and West Siberian Plane based on in situdata and remote sensing (QuickBird, Landsat, GRACE).

Geographically, mortality began on the margins of the DNC range (i.e., within the forest-steppe and conifer-broadleaf ecotones) and on terrain features with maximal water stress risk (narrow-shaped hilltops, convex steep south facing slopes, shallow well-drained soils). Within ridges, mortality occurred mainly along mountain passes, where stands faced drying winds. Regularly mortality was observed to decrease with elevation increase with the exception of Baikal Lake Mountains, where it was minimal near the lake shore and increased with elevation (up to about 1000 m a.s.l.).

Siberian pine and fir mortality followed a drying trend with consecutive droughts since the 1980s. Dendrochronology analysis showed that mortality was correlated with vapor pressure deficit increase, drought index, soil moisture decrease and occurrence of late frosts. In Baikal region Siberian pine mortality correlated with Baikal watershed meteorological variables. An impact of previous year climate conditions on the current growth was found (r2 = 0.6). Thus, water-stressed trees became sensitive to bark beetles and fungi impact (including Polygraphus proximus and Heterobasidion annosum).

At present, an increase in mortality is observed within the majority of DNC range. Results obtained also showed a primary role of water stress in that phenomenon with a secondary role of bark beetles and fungi attacks. In future climate with increased drought severity and frequency Siberian pine and fir will partly disappear from its current range, and will be substituted by drought-tolerant species (e.g., Pinus silvestris, Larix sibirica).