GC33B-1283
Influence of Forest-Cover Types on Spring Thaw Timing in the Southern Boreal Forest
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Hafiz FAIZAN Ahmed, University of Saskatchewan, Saskatoon, SK, Canada, Warren Helgason, University of Saskatchewan, Civil and Geological Engineering, Saskatoon, SK, Canada, Alan Barr, Environment Canada, Atmospheric Science & Technology, Saskatoon, SK, Canada and Thomas A Black, University of British Columbia, Soil Science, Vancouver, BC, Canada
Abstract:
The boreal forest is one of the largest of the world’s biomes covering about 11% of its terrestrial surface and accounting for about 18% of its total terrestrial carbon pool. The timing of spring thaw, resulting in a lengthening or shortening of the growing season, has a strong influence on boreal forest productivity and associated carbon dioxide exchange with the atmosphere. A study of the influence of forest-cover type upon spring-thaw timing in the southern Canadian boreal forest has been undertaken using 18 years of soil temperature measurements at depths of 5, 10, 20, 50 and 100 cm. Soil was considered to be thawing during days of consistent near-zero soil temperature (daily mean of -0.5 to 0.5 °C and standard deviation of near zero). We compared the temporal pattern (first and last day) of soil thaw at three mature forest stands: trembling aspen, black spruce, and jack pine located in central Saskatchewan (~54°N, ~105°W). The soil freezing depth was deepest at the jack pine site (>100 cm) and shallowest at the black spruce site (<50 cm during most years). The mean last day of thaw at the 5-cm depth was earliest for the aspen site followed by jack pine and black spruce, respectively, with approximately 4 days difference among sites. Deeper in the soil profile, the trend of soil thaw remained in the same order, however, with much larger differences among sites: jack pine thawed 16 days later than aspen and black spruce thawed 18 days later than jack pine. Our analysis will relate the observed site differences in thaw timing to differences in site (soil and canopy) characteristics. Developing an improved understanding of the factors influencing the inter-annual and inter-site variability of soil thaw at these sites is required to appropriately characterize the ecological and hydrological responses of these sites to projected climate change.