G31B-1115
Impact of Ionosphere on GPS-based Precise Orbit Determination of Low Earth Orbiters

Wednesday, 16 December 2015
Poster Hall (Moscone South)
Daniel Arnold, University of Bern, Bern, Switzerland
Abstract:
Deficiencies in geodetic products derived from the orbital trajectories of Low Earth Orbiting (LEO) satellites determined by GPS-based Precise Orbit Determination (POD) were identified in recent years. The precise orbits of the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission are, e.g., severely affected by an increased position noise level over the geomagnetic poles and spurious signatures along the Earth's geomagnetic equator (see Fig. 1, which shows the carrier phase residuals of a reduced-dynamic orbit determination for GOCE in m). Such degradations may directly map into the gravity fields recovered from the orbits. They are related to a disturbed GPS signal propagation through the Earth's ionosphere and indicate that the GPS observation model and/or the data pre-processing need to be improved.

While GOCE was the first mission where severe ionosphere-related problems became obvious, the GPS-based LEO POD of satellites of the more recent missions Swarm and Sentinel-1A turn out to be affected, as well. We characterize the stochastic and systematic behavior of the ionosphere by analyzing GPS data collected by the POD antennas of various LEO satellites covering a broad altitude range (e.g., GRACE, GOCE and Swarm) and for periods covering significant parts of an entire solar cycle, which probe substantially different ionosphere conditions.

The information may provide the basis for improvements of data pre-processing to cope with the ionosphere-induced problems of LEO POD. The performance of cycle slip detection can, e.g., be degraded by large changes of ionospheric refraction from one measurement epoch to the next. Geographically resolved information on the stochastic properties of the ionosphere above the LEOs provide more realistic threshold values for cycle slip detection algorithms.

Removing GPS data showing large ionospheric variations is a crude method to mitigate the ionosphere-induced artifacts in orbit and gravity field products. Using the geographically resolved characterization of the ionosphere, better data weighting schemes will be assessed in the GPS data processing for the POD of various LEO satellites. All results are established with the Bernese GNSS Software.