H33A-1562
Explore the Impacts of River Flow and Water Quality on Fish Communities
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Wen-Ping Tsai1, Fi-John Chang1, Chia-Yu Lin1, Jia-Hao Hu1, Chi-Jyun Yu1 and Ta-Jen Chu2, (1)National Taiwan University, Department of Bioenvironmental Systems Engineering, Taipei, Taiwan, (2)Chung Hua University, Department of Leisure and Recreation Management, Hsinchu, Taiwan
Abstract:
Owing to the limitation of geographical environment in Taiwan, the uneven temporal and spatial distribution of rainfall would cause significant impacts on river ecosystems. To pursue sustainable water resources development, integrity and rationality is important to water management planning. The water quality and the flow regimes of rivers are closely related to each other and affect river ecosystems simultaneously. Therefore, this study collects long-term observational heterogeneity data, which includes water quality parameters, stream flow and fish species in the Danshui River of norther Taiwan, and aims to explore the complex impacts of water quality and flow regime on fish communities in order to comprehend the situations of the eco-hydrological system in this river basin. First, this study improves the understanding of the relationship between water quality parameters, flow regime and fish species by using artificial neural networks (ANNs). The Self-organizing feature map (SOM) is an unsupervised learning process used to cluster, analyze and visualize a large number of data. The results of SOM show that nine clusters (3x3) forms the optimum map size based on the local minimum values of both quantization error (QE) and topographic error (TE). Second, the fish diversity indexes are estimated by using the Adapted network-based fuzzy inference system (ANFIS) based on key input factors determined by the Gamma Test (GT), which is a useful tool for reducing model dimension and the structure complexity of ANNs. The result reveals that the constructed models can effectively estimate fish diversity indexes and produce good estimation performance based on the 9 clusters identified by the SOM, in which RMSE is 0.18 and CE is 0.84 for the training data set while RMSE is 0.20 and CE is 0.80 for the testing data set.