T41E-2948
Geochemistry of the Bonin Fore-arc Volcanic Sequence: Results from IODP Expedition 352

Thursday, 17 December 2015
Poster Hall (Moscone South)
Marguerite Godard, University of Montpellier II, Montpellier Cedex 05, France
Abstract:
The Izu-Bonin-Mariana intraoceanic arc system, in the western Pacific, results from ~52 My of subduction of the Pacific plate beneath the eastern margin of the Philippine Sea plate. Four sites were drilled south of the Bonin Islands during IODP Expedition 352 and 1.22 km of igneous basement was cored upslope to the west of the trough. These stratigraphically controlled igneous suites allow study of the earliest stages of arc development from seafloor spreading to convergence. We present the preliminary results of a detailed major and trace element (ICPMS) study on 128 igneous rocks drilled during Expedition 352.

Mainly basalts and basaltic andesites were recovered at the two deeper water sites (U1440 and U1441) and boninites at the two westernmost sites (U1439 and U1442). Sites U1440 and U1441 basaltic suites are trace element depleted (e.g. Yb 4-6 x PM); they have fractionated REE patterns (LREE/HREE = 0.2-0.4 x C1-chondrites) compared to mid-ocean ridge basalts. They have compositions overlapping that of previously sampled Fore-Arc Basalts (FAB) series. They are characterized also by an increase in LILE contents relative to neighboring elements up-section (e.g. Rb/La ranging from <1 to 3-7 x PM at Site U1440) suggesting a progressive contamination of their source by fluids. This process in turn may have favored melting and efficient melt extraction from the source and thus its extreme depletion. Boninites are depleted in moderately incompatible elements with a decrease in their contents up-section (e.g. Yb = ~6.2 to 2.8 x C1-chondrite at Site U1439). These changes in trace element contents are associated with the development of a positive Zr-Hf anomaly relative to neighboring elements and a strong increase in LILE (e.g., Zr/Sm=~1 to 2.6 x PM and Rb/La=1-2 to 10-18). The progressive upward depletion of boninitic lavas could reveal the incorporation of harzburgitic residues from FAB generation into their mantle source.