T41E-2946
Petrology and Rock Magnetism of the peridotites of Pindos Ophiolite (Greece), insights into the serpentinization process
Thursday, 17 December 2015
Poster Hall (Moscone South)
Julie H Carlut1, Diane Bonnemains1, Catherine Mevel1, Muriel Andreani2, Javier Escartin3 and Baptiste Debret4, (1)Institut de Physique du Globe de Paris, Paris, France, (2)University Claude Bernard Lyon 1, Villeurbanne, France, (3)CNRS, Paris Cedex 16, France, (4)University of Durham, Durham, United Kingdom
Abstract:
We present a petrological and magnetic study of a suite of serpentinized peridotites from the Pindos ophiolite spanning a wide range in the degree of serpentinization (from ~10 to 100%). The Pindos ophiolite, in Northern Greece, is a portion of Late Triassic oceanic lithosphere obducted during the convergence of the Apulian and Pelagonian micro-continents. This ophiolite is interpreted mainly as the result of a supra-subduction zone spreading process but its complete history remains largely unknown. Therefore, it is not clear when the ultramafic section was exposed to fluid circulation that resulted in its serpentinization. Element partitioning during serpentinization reactions is dependent on parameters such as temperature and water-rock ratio. In particular, they affect the behavior of the iron released by olivine, which can be taken up either by magnetite, serpentine and/or brucite. Analyses of the reaction products are therefore a key to constrain the conditions during the main stage of the alteration. Our study was designed to gain insight on the conditions prevailing during hydration. Our results indicate that even fully serpentinized samples have a very low magnetization and magnetite content. Moreover, microprobe and μXanes results show that serpentine is the main host of iron in the divalent but also trivalent form. These results are compared with a set of data from serpentinized ultramafics sampled from the ocean floors, as well as from various other ophiolites. We suggest that serpentinization at Pindos occurred at relatively low-temperature (less than 200 °C), therefore not at a ridge environment. In addition, we stress that the presence of trivalent iron in serpentine indicates that serpentinization may remain a producer of hydrogen even when very little magnetite is formed.