B13I-03
Everglqades Mercury: Biogeochemistry, Modeling, and Possible Mitigation

Monday, 14 December 2015: 14:10
2010 (Moscone West)
William H Orem, USGS Headquarters, Reston, VA, United States
Abstract:
In the 1980s high levels of methylmercury (MeHg) were found in fish and other biota in the Florida Everglades, prompting fish consumption advisories. As part of Everglades restoration efforts Federal and State Agencies initiated a research program to study the underlying causes of the MeHg contamination. As part of this multi-agency effort, the U.S. Geological Survey developed the ACME (Aquatic Cycling of Mercury in the Everglades) project to examine the underlying biogeochemical factors controlling MeHg production and bioaccumulation in the ecosystem.

Field studies by ACME and others identified the many factors impacting MeHg production in the Everglades. Thes factors include: high mercury deposition, large wetland area with organic-rich anaerobic soil, high sulfate loading in surface runoff, circumneutral pH, and high dissolved organic matter (DOM) content. Florida Department of Environmental Protection efforts that reduced local mercury emissions by 90%, produced only a small reduction in mercury deposition on the Everglades, suggesting that most Hg deposited on the ecosystem originates from distant sources, and beyond the reach of regulators. ACME studies demonstrated that high sulfate loading to the Everglades comes from discharge of canal water originating in the Everglades Agricultural Area (EAA). The use of sulfur in agriculture and soil oxidation in the EAA have been shown to be the principal sources of the sulfate loading. Sulfate entering the ecosystem drives microbial sulfate reduction and MeHg production, but inhibition of MeHg production by sulfide (a byproduct of microbial sulfate reduction) makes the biogeochemistry complex. Laboratory microcosm and field mesocosm experiments by ACME helped define the complexity of the sulfur/MeHg biogeochemistry, and demonstrated the key role of dissolved organic matter in MeHg production. A conceptual model was developed that relates MeHg production to sulfate loading, DOM, and soil composition. This conceptual model was then used in the development of a mathematical model that relates how changes in sulfate loading affect MeHg production in the ecosystem. This model is currently being used to examine how limits on sulfate loading to the ecosystem could be used as a mitigation strategy to control MeHg production and levels of MeHg in Everglades biota.