H21B-1365
Mean Transit Time as a Predictor of Groundwater Discharge Response in the Upper Colorado River Basin

Tuesday, 15 December 2015
Poster Hall (Moscone South)
John E Solder, USGS, Baltimore, MD, United States
Abstract:
The Colorado River and its tributaries support 40 million municipal water users and 5.5 million acres of agriculture in the south western United States (U.S. Bureau of Reclamation, 2012). Recent estimates by Rumsey et al. (2015) suggest that a significant portion (about 50 percent) of surface water flow in the Upper Colorado River Basin (UCRB) is sustained by groundwater discharge to streams. Predicted climate variation (Cook et al., 2015) and increased water demand (U.S. Bureau of Reclamation, 2012) within the UCRB suggest future decreases in groundwater discharge, however transient groundwater responses are not well understood. In this study we calculate groundwater mean transit time (MTT) and transit time distribution (TTD) as predictors of the pattern and timing of groundwater response to hydraulic stress. Samples from nineteen large springs within the UCRB were analyzed for environmental tracers to determine MTT and TTD. The predictive value of the MTT is examined by a statistical analysis of MTT, historical spring discharge records, and the Palmer Hydrological Drought Index. MTTs of the 19 springs range from 10 to 15,000 years with a flow-weighted average of 1,650 years. The composite TTD of the 19 springs suggest that flowpaths representing 45 percent of their combined discharge have transit times greater than 100 years. However, spring discharge records indicate that flow responds to drought on much shorter (0.5 - 6 year) time scales, indicative of a hydraulic pressure response. Springs with shorter MTTs (< 100) generally correlated with larger discharge variations and faster responses to drought indicating MTT can be used for estimating the relative magnitude and timing of groundwater response. Previous study (e.g., Manga, 1999) has shown groundwater responds on shorter time scales than the MTT, but of interest the results presented here indicate that relatively stable and old springs with long MTTs (> 100) also show a hydraulic pressure response. While not fully representative of the UCRB, results from the 19 springs indicate that groundwater discharge responds to climate variation and water-demand imbalances over a relatively short time period of years.