T43C-3014
Geodetic Measurements of Slow Slip and Tremor in Parkfield, CA
Thursday, 17 December 2015
Poster Hall (Moscone South)
Brent G Delbridge1, Roland Burgmann2 and Robert M Nadeau2, (1)Berkeley Seismological Lab, Berkeley, CA, United States, (2)University of California Berkeley, Berkeley, CA, United States
Abstract:
It has been proposed that large bursts of deep tremor ( >20km depth) near Parkfield, CA are associated with quasi-periodic shear dislocations on the deep extent of the San Andreas Fault. Geodetic studies have shown that slow slip accompanies tremor in several subduction zones [e.g. Rogers and Dragert, 2003; Ide et al 2008]. However, prior to this study deformation associated with tremor in a transform fault environment had not been observed despite the ubiquitous presence of tremor and LFEs [Shelly et al, 2007; Nadeau et al 2005] and targeted attempts to observe this deformation [Smith 2009]. In this study we report geodetic measurements of surface strains associated with large tremor swarms that are inferred to be concurrent with slow-slip events with moment magnitudes exceeding 5 [Guilhem et al 2012]. The strain rates associated with these events are below the detection level of GPS networks, thus in order to observe this deformation we have utilized two long-baseline laser strainmeters (LSM) located in Cholame, CA. In order to overcome a small signal-to noise-ratio in the strainmeter data, we have stacked the strain records associated with more than 50 large tremor-burst events, each approximately 10 days in duration. The average surface strains associated with these events are on the order of several nanometers and correspond to fault slip on the order of 5 millimeters per event (assuming a fault patch extending ~25 km along-strike and ~15km in depth). The measured moment associated with these events is a factor of two smaller than previously proposed based on theoretical estimates [Guilhem et al 2012]. In this study we also explore the deformation associated with a large increase in tremor activity following the August 24, 2014 M6.0 Napa earthquake, the largest observed burst in the Parkfield-Cholame area since the large tremor rate increase associated with the 2004 Parkfield M6 earthquake.