OS51B-1987
Rain Impact Model V2.0 for Sea Surface Salinity: A Flag for Salinity Stratification
Abstract:
The Central Florida Remote Sensing Laboratory has analyzed Aquarius (AQ) sea surface salinity (SSS) and ESA’s Soil Moisture Ocean Salinity (SMOS) retrievals in the presence of rain and has developed a Rain Impact Model (RIM V2.0) that predicts transient near-surface salinity stratification based upon the corresponding rain accumulation over the previous 24 hours and the effect of the wind speed.For both of the satellite SSS measurements, a common reference for comparison is the Hybrid Coordinate Ocean Model (HYCOM) for ocean salinity, but there is a significant mismatch between the remote sensing sampling depth of approximately 0.01 m and the typical range of 5 m to 10 m of in situ instruments. Under normal ocean conditions the upper layer of the ocean is well mixed and there is an approximately uniform salinity for the first 10 m depth; therefore satellite measurements are good estimates of the bulk salinity. Conversely, under rainy conditions, there is a dilution of the near-surface salinity that mixed downward by diffusion and mechanical mixing of gravity waves, where the wind speed information play a significant role in the model. This transient phenomena, known as salinity stratification, significantly modifies the salinity gradient in the upper 1 m of the ocean; and therefore invalidates the usual assumption of well-mixed salinity. Generally, these salinity stratifications dissipate in less than a couple of hours and the upper layer becomes well mixed at a slightly fresher salinity.
The Rain Impact Model V2.0 is based on the RIM V1.0, previously published, which includes the rain accumulation effect but ignores the variations on wind speed using a constant vertical diffusivity value. This research addresses the effects of rainfall on the AQ and SMOS SSS retrieval using a macro-scale Rain Impact Model (RIM) in regions of high convective rain. This model, based on the superposition of a one-dimension eddy diffusion (turbulent diffusion) model, relates sea surface salinity to depth, rain accumulation, time since rainfall, and wind speed. Comparisons among 2-D rain patterns, SMOS SSS, AQ SSS and RIM SSS will be shown in this analysis.