H23J-08
Fine-Scale Spatial Variability of Precipitation, Soil, and Plant Water Isotopes

Tuesday, 15 December 2015: 15:25
3020 (Moscone West)
Greg R Goldsmith1, Sabine Braun2, Clara Romero3, Nadine Engbersen3, Arthur Gessler4 and Rolf T Siegwolf3, (1)Paul Scherrer Institute, Villingen, Switzerland, (2)Institute for Applied Plant Biology, Schönenbuch, Switzerland, (3)Paul Scherrer Institute, Villigen, Switzerland, (4)WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Forest Growth and Climate, Birmensdorf, Switzerland
Abstract:
Introduction: The measurement of stable isotope ratios of water has become fundamental in advancing our understanding of environmental patterns and processes, particularly with respect to understanding the movement of water within the soil-plant-atmosphere continuum. While considerable research has explored the temporal variation in stable isotope ratios of water in the environment, our understanding of the spatial variability of these isotopes remains poorly understood.

Methods: We collected spatially explicit samples of throughfall and soil water (n=150 locations) from a 1 ha plot delineated in a mixed deciduous forest in the northern Alps of Switzerland. We complemented this with fully sunlit branch and leaf samples (n = 60 individuals) collected from Picea abies and Fagus sylvatica between 14:00 and 16:00 on the same day by means of a helicopter. Soil and plant waters were extracted using cryogenic vacuum distillation and all samples were analyzed for δ18O using an isotope ratio mass spectrometer.

Results: The mean δ18O of throughfall (-3.3 ± 0.8‰) indicated some evaporative enrichment associated with passage through the canopy, but this did not significantly differ from the precipitation collected in nearby open sites (-4.05‰). However, soil was depleted (-7.0 ± 1.8‰) compared to throughfall and there was no significant relationship between the two, suggesting that the sampling for precipitation inputs did not capture all the sources (e.g. stream water, which was -11.5‰) contributing to soil water δ18O ratios. Evaporative enrichment of δ18O was higher in leaves of Fagus (14.8 ± 1.8‰) than in leaves of Picea (11.8 ± 1.7‰). Sampling within crowns of each species (n = 5 branches each from 5 individuals) indicated that variability in a single individual is similar to that among individuals.

Discussion: Stable isotopes of water are frequently engaged for studies of ecohydrology, plant ecophysiology, and paleoclimatology. Our results help constrain the variability within different water sources across space (e.g. when vizualized as isoscapes), as well as the extent of fractionation among those sources as water moves through the critical zone. In doing so, we also provide insight into how environment shapes this fine-scale variation in order to inform future applications of water isotopes.