V43A-3094
The role of bend faults on slab serpentinization at the Nicaraguan convergent margin

Thursday, 17 December 2015
Poster Hall (Moscone South)
Shreya Singh, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
Abstract:
The thermal state and the degree of hydration of the incoming oceanic plate influences many of the processes occurring in subduction zone settings. A range of geophysical evidence suggests extensional faults can be generated due to the bending of the down-going plate prior to subduction. Such faults can penetrate into the upper part of the oceanic lithospheric mantle, therefore providing downward pathways for fluids. If the P-T conditions in the upper oceanic mantle are right, olivine will react with water to form serpentinite. As serpentinite can contain up to 13 wt.% water it could be an important carrier of water beneath the volcanic arc and ultimately into deeper parts of the mantle.

The influx of fluids due to bend faulting may account for deficits in observed heat flow in the trench outer rise. This has been identified as an important process in the Cocos plate being subducted beneath Nicaragua, which exhibits an average heat flow anomaly of -83 mW/m2. Here, we investigate the degree of hydration of the incoming mantle by bend faulting using a 1D model of water influx based on heat flow deficit. Assuming that all the water brought down into the upper mantle results in serpentinization, our modelling suggest 20 – 50 % of the upper 6 km of oceanic lithospheric mantle is serpentinised prior to subduction, in good agreement with evidence from seismology (~30%). The slab geotherm suggests that serpentinite present in the oceanic mantle starts dehydrating at subarc depths (~120 km). Our estimates suggest that the serpentinized oceanic mantle contributes a significant amount of water to Nicaraguan arc magmas. Therefore, the results indicate that the incoming mantle serpentinized by bend faulting is a key reservoir of subducted water.