P31H-04
Constraining the Rheologic Properties of Channelized Basaltic Flows on Earth and Mars

Wednesday, 16 December 2015: 08:45
2009 (Moscone West)
Michael S Ramsey, University of Pittsburgh, Pittsburgh, PA, United States, Andrew John Lang Harris, Laboratoire Magmas et Volcans, Clermont-Ferrand Cedex, France and David A Crown, Planetary Science Institute Tucson, Tucson, AZ, United States
Abstract:
Basaltic volcanism is ubiquitous on the terrestrial planets and is the most common form of extrusive activity on Earth, with over half of the world’s volcanoes consisting largely of basalt. Recently, new eruptions (or new phases of ongoing eruptions) have occurred at Tolbachik in Russia (2012-2013); Bardarbunga in Iceland (2014); Etna in Italy (2014); and Kilauea in Hawaii (2014-2015) emphasizing both the hazard potential and volumetric production of basaltic activity. Furthermore, new high-resolution data of flows on Arsia Mons volcano (Mars) show very similar features. Therefore, this style of effusive volcanism and especially its surface manifestation (lava flows) warrants continued study both from a fundamental science as well as a hazard mitigation point of view. Monitoring flow propagation direction and velocity are critical in these situations and a number of models have evolved over time focused on heat loss and down-flow topography to predict flow advance. In addition to topography, the dominant (internal) factors controlling flow propagation are the discharge rate combined with cooling and increasing viscosity. However, all these models rely on accurate temperature measurements derived from the cooling glassy surface using infrared (IR) non-contact instruments. New laboratory and field-based studies are attempting to characterize the cooling, formation, and dynamics of basaltic surfaces using IR data. Preliminary results are focused on resolving inconsistencies in the derived flow temperature, composition, texture and silicate structure, which can all impact the surface-leaving heat flux. Improved accuracy in these retrievals increases our ability to constrain and model flow surface and interior temperatures. The impact of this improved accuracy has now been assessed using flow model simulations of active terrestrial and well-preserved Martian flows, Results are improving our understanding of the initial eruption conditions of these channelized basaltic lava flows on both planets.