ED11F-07
Using Tree-Ring Data to Develop Critical Scientific and Mathematical Thinking Skills in Undergraduate Students

Monday, 14 December 2015: 09:30
303 (Moscone South)
Nicole K Davi, William Paterson University of New Jersey, South River, NJ, United States, Frank Wattenberg, West Point Military Academy, West Point, NY, United States, Patrick T Pringle, Centralia College, Centralia, United States, Francesco Fiondella, Earth Institute, Palisades, NY, United States, Ida Greidanus, Passaic County Community College, Paterson, United States and Rose Oelkers, Lamont-Doherty Earth Observatory, Palisades, United States
Abstract:
Tree-ring science provides an engaging, intuitive, and relevant entryway into understanding both climate change and environmental research. It also sheds light on the process of science--from inspiration, to fieldwork, to analysis, to publishing and communication. The basic premise of dendrochronology is that annual rings reflect year-to-year environmental conditions and that by studying long-lived trees we can learn about environmental and climatic conditions going back hundreds to thousands of years. Conceptually, this makes tree-ring studies accessible to students and faculty for a number of reasons. First, in order to collect their data, dendrochronologists often launch expeditions to stunningly picturesque and remote places in search of long-lived, climate sensitive trees. The exciting stories and images that scientists bring back from the field can help connect students to the studies, their motivation, and the data collected. Second, tree rings can be more easily explained as a proxy for climate than ice cores, speleothems and others. Most people have prior knowledge about trees and annual growth rings. It is even possible, for example, for non-expert audiences to see climate variability through time with the naked eye by looking at climate-sensitive tree cores. Third, tree rings are interdisciplinary and illustrate the interplay between the mathematical sciences, the biological sciences, and the geosciences—that is, they show that the biosphere is a fundamental component of the Earth system.

Here, we present online, multi-media learning modules for undergraduates that introduce students to several foundational studies in tree-ring science. These include evaluating tree-ring cores from ancient hemlock trees growing on a talus slope in New Paltz, NY to learn about drought in the Northeastern US, evaluating long-term streamflow and drought of the Colorado River based on tree-ring records, and using tree-ring dating techniques to develop construction histories of cliff dwellings and pueblos in the US Southwest. Our modules are designed to give undergraduate students a sense of the scientific process, from fieldwork and logistics, to data processing and data analysis.