A13A-0304
Seasonal Transitions and the Westerly Jet in the Holocene East Asian Summer Monsoon

Monday, 14 December 2015
Poster Hall (Moscone South)
Wenwen Kong and John C H Chiang, University of California Berkeley, Berkeley, CA, United States
Abstract:
The Holocene East Asian Summer Monsoon (EASM) was characterized by a trend to weaker monsoon intensity paced by orbital insolation. Here, we attribute the stronger EASM intensity in the early-mid Holocene to changes in the timing of the transition between the EASM seasonal stages – Spring, pre Mei- Yu, Mei-Yu, and Summer - during that time. Following the recent ‘jet transition hypothesis’ (Chiang et al., 2015), we explore the role of north-south displacement of the westerlies relative to the Tibetan Plateau that is hypothesized to control the downstream EASM seasonality changes across the Holocene. To this end, we analyze model simulations of the Holocene EASM, compare the simulated Holocene climate with the paleodata observations, and examine the role of atmospheric circulation and specifically the westerlies in modulating the East Asia summer climate.

The PMIP3 climate model simulations suggest that, compared to the pre-industrial, the Mei-Yu onset and the transition from Mei-Yu to Summer rainfall occur earlier in the mid-Holocene. The advanced seasonal rainfall transition is accompanied by the weakened and northward-shifted upstream westerlies. In our atmospheric general circulation model (coupled to a slab ocean) simulations of various time periods across the Holocene (9ka, 6ka, 3ka, and pre-industrial), we quantitatively show that the timing and the length of each rainfall stage are closely related to the jet position over East Asia. We also show that the simulated changes in the maximum annual rainfall band and dust emission over East Asia largely agree with the paleo-proxy observations. In addition, we find that changes to the seasonal rainfall transitions, latitudinal westerly position, and stationary eddy activity over East Asia co-vary across the Holocene. In particular, we argue that the changes in the rainfall seasonal transitions are tied to an altered stationary wave pattern, resembling today’s the so-called ‘Silk Road Pattern’, riding along the westerly jet.

We end by discussing the mechanism that is proposed to explain the changed EASM seasonality across the Holocene.