H23A-1562
Sensitivity Studies of 3D Geothermal Reservoir Simulation: A Case Study in I-Lan Plain, Taiwan
Abstract:
A large scale geothermal project conducted by Ministry of Science and Technology is initiated recently in I-Lan south area, northeastern Taiwan. The ultimate goal of this national project is to increase the percentage of renewable energy (ex. geothermal energy) to generate electricity. An integrated team which consists of various specialties are held together to investigate I-Lan area comprehensively. For example, I-Lan geological data, petrophysical analysis, seismicity, temperature gradient and distribution, hydrology, geochemistry, and heat source study etc. The geothermal gradient measured at one drilling well (1200m deep) is up to 50˚C/km and the prediction of temperature based on fluid inclusion analysis could be up to 300˚C. The geothermal reservoir is expected to occur at a fractured geological formation, Siling sandstone layer.A 3D subsurface geological model is built mainly based on the seismic exploration of the subsurface structure and well log data. According to the current conceptual model, the target area is bounded by two main faults, Jiaosi and Choshui faults. The preliminary results from all the investigations are integrated and used as input parameters to create a realistic numerical reservoir model. Numerical simulator TOUGH2 is used to study the geothermal energy potential. The initial state of temperature distribution is simulated and compared to the high resolution of magnetotelluric (MT) data. Simulation results show that they have similar pattern and therefore the prediction of geothermal potential in this area would be more reliable. Based on the realistic initial state, sensitivity studies are performed to investigate effects of relevant parameters on temperature distribution.