A11R-08
The statistical inhomogeneity of surface air temperature in global atmospheric reanalyses

Monday, 14 December 2015: 09:45
3012 (Moscone West)
Craig R Ferguson, University at Albany State University of New York, Albany, NY, United States and Min-Hee Lee, Seoul National University, Seoul, South Korea
Abstract:
Recently, a new generation of so-called climate reanalyses has emerged, including the 161-year NOAA—Cooperative Institute for Research in Environmental Sciences (NOAA-CIRES) Twentieth Century Reanalysis Version 2c (20CR V2c), the 111-year ECMWF pilot reanalysis of the twentieth century (ERA-20C), and the 55-year JMA conventional reanalysis (JRA-55C). These reanalyses were explicitly designed to achieve improved homogeneity through assimilation of a fixed subset of (mostly surface) observations. We apply structural breakpoint analysis to evaluate inhomogeneity of the surface air temperature in these reanalyses (1851-2011). For the modern satellite era (1979-2013), we intercompare their inhomogeneity to that of all eleven available satellite reanalyses. Where possible, we distinguish between breakpoints that are likely linked to climate variability and those that are likely due to an artificial observational network shift. ERA-20C is found to be the most homogenous reanalysis, with 40% fewer artificial breaks than 20CR V2c. Despite its gains in homogeneity, continued improvements to ERA-20C are needed. In this presentation, we highlight the most spatially extensive artificial break events in ERA-20C.