A51B-0044
Observation of a Dust Storm during 2015 Spring over Beijing, China

Friday, 18 December 2015
Poster Hall (Moscone South)
Yang Lv1, Donghui Li1, Zhengqiang Li2, Xingfeng Chen1, Hua Xu1, Zhao Liu1, Lili Qie1, Ying Zhang3, Kaitao Li1 and Yan Ma1, (1)RADI Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, (2)Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, Beijing, China, (3)State Environmental Protection Key Laboratory of Satellites Remote Sensing Applications, Beijing, China
Abstract:
Dust events bring significant impacts on the regional environment, human health and even climate. There are four major dust explosion areas in the world, such as North America, Australia, Central Asia and Middle East. Located in the Central Asia, North China has a severe desertification because of deforestation and excessive population growth. Beijing is at the fork of three dust transmission paths in Chin, which makes it a dust-prone region for a long history especially in spring. Thanks to the improvement of the ecological environment in Mongolia, the number of dust weather in recent years reduced significantly than before. However, as the spring coming earlier for the relatively high temperature, a severe dust weather process happened suddenly on March 28, 2015 following with the long-term hazy weather, which up to the highest intensity in the nearly two years.

A set of ground-based observations for this serious dust event were adopted in this paper. The ground-based remote sensing station is equipped with an automatic CIMEL lidar and an AERONET sun-photometer. Aerosol optical depth (AOD) and aerosol size distribution were measured by sun-photometer. AOD of dust reached 2.0 at 532nm, which was much larger than clear days. And there was an obvious trend that coarse mode increases more significantly and quickly than fine mode when a dust storm occurs. At the same time, data provided by the air quality monitoring and analysis platform of China shown that the PM10 concentration was larger than 1000μg/m3 and PM10 made important contribution to the high AQI. Lidar observation clearly shown the dust spread very tall (higher than 1km) when the dust storm occurrence. After the dust dissipating, the planetary boundary layer roughly from 0 to 3km, aerosol has a very widely vertical distribution. The AOD based on sun-photometer were taken as a constraint, 65 sr were retrieved and analyzed. And the extinction coefficients indicated that the dust had been dissipation near the ground, while some dissolved into the upper air (2-3km) after the dust passed over.

Backward trajectory analysis showed those dust was originating from Mongolia (northwest of Beijing). According to the air quality index data, the dust transmission path could be Beijing-Tianjin-Hebei-Shandong-Jiangsu. And then it deposited at Taizhou in Jiangsu province.