Does remote sensing help translating local SGD investigation to large spatial scales?
Abstract:
But what if remote sensing can provide certain information that may be used as translation between the two, similar to transfer functions in many other disciplines allowing an extrapolation from in-situ investigated and quantified SGD (discrete information) to regional scales or beyond?
Admittedly, the sketched future is ambitious and we will certainly not be able to present a solution to the raised question. Nonetheless, we will show a remote sensing based approach that is already able to identify potential SGD sites independent on location or hydrogeological conditions. Based on multi-temporal thermal information of the water surface as core of the approach, SGD influenced sites display a smaller thermal variation (thermal anomalies) than surrounding uninfluenced areas. Despite the apparent simplicity, the automatized approach has helped to localize several sites that could be validated with proven in-situ methods. At the same time it embodies the risk to identify false positives that can only be avoided if we can ‘calibrate’ the so obtained thermal anomalies to in-situ data. We will present all pros and cons of our approach with the intention to contribute to the solution of translating SGD investigation to larger scales.