Characteristics of Airborne Lidar Profiles of the Arctic Ocean

James H Churnside, NOAA Boulder, Boulder, CO, United States and Richard Marchbanks, Colorado University/NOAA/ESRL, Boulder, CO, United States
Abstract:
In July, 2014, we flew the NOAA oceanographic lidar more than 6000 km over the Chukchi and Beaufort Seas around northern Alaska. The most obvious feature in the lidar returns was sea ice, which blocked any return from below and saturated our receivers. The flights were designed to measure profiles with varying degrees of ice cover, from open water to nearly completely covered water. Thin phytoplankton layers were also prevalent, both in open water and within the pack ice. These layers were generally deeper (20 m vs. 16 m averages) and stronger (27 times the background level vs. 9 times) in open water than in the ice. The average layer thicknesses were similar in open water and in the ice (3.8 m vs. 3.4 m). The diffuse attenuation coefficient measured by the lidar did not depend strongly on ice cover. It was generally higher near the coast than farther off shore. Fish were present in a few of the returns, but these were not very numerous. More common were the sediment plumes generated by gray whales feeding on crustaceans on the bottom. Data from these flights show a high level of spatial variability that is difficult to measure from a surface vessel and significant vertical structure that is impossible to obtain from satellite ocean-color instruments. One application of this type of lidar data is to estimate primary productivity in the Arctic Ocean. It is clear that productivity is increasing, largely as a result of decreased ice cover, but many details remain uncertain.